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Abstract. We obtain a new class of conformally flat solutions for a perfett fluid having 
equation of state p = a w .  

1. Introduction 

In a pioneer work, Fock (1955) obtained conformally flat solutions of Einstein’s 
equations for dust-like matter. Later Vashchuk (1969) carried out a systematic 
investigation of four-dimensional conformally flat spaces as gravitational fields satisfy- 
ing Einstein’s equations for the same type of distribution. 

In the present paper, we will investigate the problem of determining the conformally 
flat solutions of Einstein’s equations for a fluid satisfying the equations of state p = LYW, 

where p is the pressure, w is the rest-energy density and LY is a constant. 

2. Einstein’s equations 

Einstein’s field equations for a perfect fluid with rest-energy density w, pressure p and 
four-velocity ui can be written as 

Gij =Rij-igijR = - K T i j = - ~ [ ( w  +p)uiuj-pgij], 

where 
i uiu = 1. 

We consider that the equation of state of the fluid is 

LYw=p, 

where LY is a positive constant. 
Assuming a space-time which is conformally flat, 

gij = eZaqij, 

where qij is the flat metric having signature -2 arid (+ = ( + ( x i ) ,  the field equations (1) 
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with condition (2) reduce to (Eisenhart 1966) 
i uL, + q v , , A l a = $ ~ w [ ~ q ~ ,  e2rr-(a + l)ulu,3, 

where 
VI] = U,L] - ( + . l f l J ,  A ~ u  = ~ " v , ~ u , ~ .  

Equation (3) may be written as the following set of equations: 

ajj = - $ K W ( a  + l ) U i U j ,  

oii+&?iAlU=$KW[3e e i - (a  +l)u?],  i = j ,  

iSj, 
1 2rr 

(3) 

where e, = i l ,  (el = e 2 =  e3= -1, e 4 =  1). 
To solve this overdetermined system of equations, (4) and ( 5 ) ,  we note first that it is 

possible to obtain the rest-energy density in terms of the conformal factor, U from the 
trace of the field equations (3), 

w = [ 6 / ~ ( 1 - - 3 a ) ]  e-2u(vabo-,ab +Ala) .  (6) 
Using equations (5) and (6), we can obtain the four-velocity in terms of the 

conformal factor a, 

(7) 

Now using equations (4), (6) and (7) ,  we can write the differential equation that the 
conformal factor has to satisfy as 

for i # j .  
The problem of finding conformally flat solutions of Einstein's field equations has 

been reduced to investigating solutions for U in equations (8). The conformal factor, to 
be physically reasonable, has to define the rest-energy density (6) as a positive function 
and the four-velocity (7) to satisfy uiu = 1. 

Supposing that the conformal factor is independent of one of the coordinates x a ,  
which implies 

r i a  = 0,  

equations (8) can be reduced to 

1 1 1 1  ei crjj+ejAlcr --- -- 
(2 1-3a) 1-3a 

e, A l a  --- -- [ (t 1-3a) 1-3a 

for j # a. Equation (9) can be satisfied only if 

1 1  1 
2 1-3a 1-3a A l u (  ---) -- 7 ' j T e f  = 0, 

because the case 
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gives a contradiction to the other equations of (8). Re!ation (10) then allows us to write 
the rest-energy density (6) as 

w = ( 3 / ~ )  e-2uhlu. (11) 
We observe then that as U must be real, it must be time-dependent, as otherwise w will 
be negative. 

3, Solutions 

3.1. a 23 

Now we look for solutions of the system (8) assuming that a # 3 and that the functional 
dependence of the conformal factor is known. Since the functional dependence is not 
unique, we study two possible choices. 

3.1.1. First choice 
2 2 2 2  cr = a@), 

A ’ + 4 A ( ( ~ ” - ( + ’ ~ ) ( x : e i + x i 2 e ~ )  = 0 ,  

s=  - X I  - x 2  -x3 +x4. 

Substituting (12) into (8) we obtain 

where 

and the prime means differentiation with respect to S. Since A is a function only of the 
parameter S, equation (13) is only satisfied if A = 0, which may be written 

2 ut( 
0. 

4 2 
(1 - m) f + (1 -E) 7 = 

The solution of (15) is 

In the particular case when a = 0, (16) reduces to Vashchuk’s result (15). We can obtain 
w and ui for the metric (16) applying equations (6) and (7): 

where the constants of integration C1 and Cz are chosen such that w is a positive 
function and uiui = 1. 

3.1.2. Second choice 

cr = u(Z), Z = kixl+ k 2 ~ 2  + k 3 ~ 3  + k4~4 ,  (19) 

where ki are arbitrary constants. 
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Substituting (19)  into ( 8 )  we obtain 

B 2 + B ( a ” a ’ 2 ) ( k ? e i  + kfei)  = 0,  

where 

and the primes here mean differentiation with respect to 2. Since B is a function only of 
the parameter 2, equation (20)  can only be satisfied if B = 0, or 

ff” = 0 ,  
1 

which has the solution 
4/ (1+3a)  e2u = (Z + c,) , 

where C3 is a constant of integration. For a = 0 equation (21)  reduces to Vashchuk’s 
result (17) .  For solution (21)  we can find w and ui from (6)  and ( 7 ) :  

1 2 k 2  (Z+C -4/(1+3m)-2 
3) w = -  

K (1+3a)’  7 

3.2. a =$  
In the particular case when a = 5 we have a photonic fluid for which the trace of the 
energy-momentum tensor vanishes; hence the trace of the field equations ( 3 )  reduces to 

qii(eu),ii = 0. (24)  

Two possible solutions of (24)  are 

ezr -- (c, + c~/s)’ ,  
e2u = ( Z  + c,)’. 

Introducing (25)  into the field equations (a), we find 

w = (12 e - 3 u ~ 2 / ~ ~ 2 ) ( ~ 2  e-“/S - I ) ,  

U ,  = x i  eU/S1/’, 

and introducing (26)  into the field equations (3), we obtain 

w = ( 3 k 2 / ~ )  e-4u, 

ui = ki e‘/(k2)1’2. 

The constants C1, C2 and C3 have to be chosen such that w is a positive function and 

We observe, then, that the conformally flat metrics given by (16)  and (21) are valid 
U i U i  = 1 .  

1 also for a = 5. 
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3.3. a = 1 

One can obtain a more general class of solutions for the case a = 1. As the metric 
demands that the motion of the fluid is irrotational, the four-velocity can be expressed 
in terms of a function + ( X I )  as 

uI = 4,1/(e-2uqab4,a4.b)1/2, (3 1) 
and w and p can be expressed as 

(32) 1 -2u ab  w = p = s e  T 4.a4.b. 
With conditions (31) and (32) it is possible to prove that the field equations (3) 

reduce to the field equations of a massless scalar field (Tabensky and Taub 1973): 

(33) 1 
UII f Z ‘ Q I ~ A ~ U  = ; K ( - ~ , I ~ , I  +a%1qab4.a4,b), 

for which the trace is given by 

q‘lcrlJ +2Al(r = -a~q”4,~4,~. (34) 
We study a special class of solutions by imposing a functional relationship of the 

form 

U = U(q5). 

Substituting (35) into the trace (34) we obtain 
(35) 

qij4,i4,j(6ut’- 3 d 2  + K )  = 0, (36) 
where the primes denote differentiation with respect to 4. Since qii4,j4,j # 0, we obtain 
the differential equation 

6d’-  3 ~ ‘ ~  + K = 8. (37) 
The general solution of (37) is 

where 5 is a particular value of 4, q = ( 2 ~ 7 ‘ ) ~  given by the boundary conditions, and 

C = ( ~ / 6 ) ~ / ~ - $ ~ 7 ,  D = ( ~ / 6 ) ’ / ~ + $ q .  (39) 

The constants which appear in (38) have been fixed such that when 4 = 0 we have U = 0. 

From equations (33) and (37) we find 

$K+,i+,j + ZCT’4,ij + q i j q a b d 4 & , b  = 8. (40) 
One particularly simple solution of equation (40) can be obtained from (38) when 
C = 0, which reduces to (Penney 1976) 

U = $(2~/3)’/*4. 

By the substitution of (41) into (40) we obtain 

4,ij + (2~/3)’ /~4, i4 , j  = 0, 

which has the general solution 

4 = ( 3 / 2 ~ ) l / ~  ln(2 + C3). (43) 
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Substituting (43) into (41) we find the conformally flat solution 

eZu = z + c3, (44) 

which is the same as relation (21) with a = 1 when we assumed the functional relation 
(19). In the particular case when kl = k2 = k3 = 0 ,  k4 # 0 and C, = 0, (44) becomes 

eZU = k4x4, 

which is a Robertson-Walker space-time. 
For C # 0 we define (Som and Santos 1978) 

which allows us to write equation (38) as 

Substituting (46) into (40) we obtain the solution 

and a and ti are constants of integration. 

the conformally flat space-time (46). We find 
By substituting (47) into (31) and (32) we can obtain w and ui for a perfect fluid in 

w = - e  

ui = (a/F)”’(xi + t i ) ,  

4K 

where we need the condition aF > 0 for w to be a positive function and ui to satisfy 
U i U i  = 1. 

Conclusion 

We have found a new class of conformally flat solutions for the problem of a fluid with 
the equation of state p = a w .  One recovers the solutions given by Vashchuk from these 
solutions simply by putting a = 0. When a = 1 our solution is equivalent to that given 
by Taub. Further, one can investigate the case of the relativistic fluid by putting a = $ in 
metrics (16) and (21). The solution corresponding to disordered radiation (a  = 3)  is also 
presented. 
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