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Abstract. We obtain a new class of conformally flat solutions for a perfett fluid having
equation of state p = aw.

1. Introduction

In a pioneer work, Fock (1955) obtained conformally flat solutions of Einstein’s
equations for dust-like matter. Later Vashchuk (1969) carried out a systematic
investigation of four-dimensional conformally flat spaces as gravitational fields satisfy-
ing Einstein’s equations for the same type of distribution.

In the present paper, we will investigate the problem of determining the conformally
flat solutions of Einstein’s equations for a fluid satisfying the equations of state p = aw,
where p is the pressure, w is the rest-energy density and « is a constant.

2. Einstein’s equations

Einstein’s field equations for a perfect fluid with rest-energy density w, pressure p and
four-velocity u; can be written as

Gy = Ryj—1g;R = —«Ty=—«[(w +p)ua; — pgy), ¢))
where

un' =1.
We consider that the equation of state of the fluid is

aw =p, (2)

where «a is a positive constant,
Assuming a space-time which is conformally flat,

8 = 32077;',',
where n; is the flat metric having signature —2 and o = o(x’), the field equations (1)
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with condition (2) reduce to (Eisenhart 1966)
aif '*'%ﬂr,'AﬂT =3xwling e —(a + Duwyl, (3)
where
Oy =0 ;=00 Ao =7"0,0;
Equation (3) may be written as the following set of equations:
oy = —Skw(a + Duu;, i #], 4
o +3eo =3kw(ie* e — (o + Du?l, i=j, (5)
where ¢, =zx1, (e;=e;=e3=—-1, e4=1).
To solve this overdetermined system of equations, (4) and (5), we note first that it is

possible to obtain the rest-energy density in terms of the conformal factor, o from the
trace of the field equations (3),

w=[6/k(1-3a)] e—2a(nab0"ab +440). 6)

Using equations (5) and (6), we can obtain the four-velocity in terms of the
conformal factor o,

L m[ e, 62”(1—3a)( oy +ieAio >J”2

a+1) 3a+1) \n®ou+Ao

(7)

Now using equations (4), (6) and (7), we can write the differential equation that the
conformal factor has to satisfy as

11 D
(el )8y, )

2 1-3a/ 1-3a
1 1 e
<o asoly-1o5g) - e o ®

for i #j.

The problem of finding conformally flat solutions of Einstein’s field equations has
been reduced to investigating solutions for o in equations (8). The conformal factor, to
be physically reasonable, has to define the rest-energy density (6) as a positive function
and the four-velocity (7) to satisfy wu' =1.

Supposing that the conformal factor is independent of one of the coordinates x°,
which implies

Tig = 09
equations (8) can be reduced to

R o
e“[A“’(z 1—3a> 1=3a " Cej| ot e\ 7 1o5,) T3 " =0 @)

for j # a. Equation (9) can be satisfied only if

11 1
A“"(z"1—3a>"1—3a n =0, (10)

because the case

1 1 g .
o+edio(5~157) T e =0
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gives a contradiction to the other equations of (8). Relation (10) then allows us to write
the rest-energy density (6) as
w=(3/x)e > As0. (11)

We observe then that as o must be real, it must be time-dependent, as otherwise w will
be negative.

3. Solutions

3.1 a#3

Now we look for solutions of the system (8) assuming that o # § and that the functional
dependence of the conformal factor is known. Since the functional dependence is not
unique, we study two possible choices.

3.1.1. First choice

o=0(S), S=—x3—x3-x2+x2 (12)
Substituting (12) into (8) we obtain
A’+4A(0" o) (xle;+x3e) =0, (13)
where
A=20"+4S '2(1————1—)——1—(8 '+ 480" (14)
TET T 2T 130/ 1-3a 0 T

and the prime means differentiation with respect to S. Since A is a function only of the
parameter S, equation (13) is only satisfied if A = 0, which may be written

4 \1 2N, 2 o
(1_1—3a>§+(1—1~3a>0 T30 o (15)

The solution of (15) is

4/(143a)
C2 ) . (16)

20 _
e’ = (C1 +_S(l+3a)/2

In the particular case when a =0, (16) reduces to Vashchuk’s result (15). We can obtain
w and y; for the metric (16) applying equations (6) and (7):

12 C —4/(1+3a)-1 B o B C o -1
w=—'<—c2[cl+——s(1+3i)/2] g 1[(625“*3 >/2+1) —1], (17)
X ’ Cz 2/(1+3a)
ui=7-§(C1+—""——S(l+3a)/2> s (18)

where the constants of integration C; and C; are chosen such that w is a positive
function and wu' =1.

3.1.2. Second choice
0'=0'(Z), Z=kix1+kax,+Kkaxs+kaxs, (19)

where k; are arbitrary constants.
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Substituting (19) into (8) we obtain

B>+ B(o"0"*)(kie;+kie) =0, (20)
where
12 _]_'__ 1 > 2 _ 12 1 " 2 _ i
B=k (2 -3/ KiT37>  KEmkk

and the primes here mean differentiation with respect to Z. Since B is a function only of
the parameter Z, equation (20) can only be satisfied if B =0, or

which has the solution
eZa‘ . (Z+ C3)4/(1+3a)’ (21)

where Cj is a constant of integration. For a = 0 equation ¢21) reduces to Vashchuk’s
result (17). For solution (21) we can find w and u; from (6) and (7):

12k 1 _ .
Y TR G 22)
u = —]f—;;(z + Cy)? 13 (23)

32 a=3%

In the particular case when « =3 we have a photonic fluid for which the trace of the
energy-momentum tensor vanishes; hence the trace of the field equations (3) reduces to

Tlij(ea),if =0. (24)
Two possible solutions of (24) are

e’ = (C1+ C2/S), (25)

e =(Z+Cy)% (26)
Introducing (25) into the field equations (3), we find

w=(12e77Co/xS8*)(C,e7°/S - 1), (27)

u=x; e°/SY?, (28)
and introducing (26) into the field equations (3), we obtain

w=(3k*/k) e, (29)

u;=k; e/ (k*)"2. (30)

The constants C, C; and Cs have to be chosen such that w is a positive function and
wu' =1,

We observe, then, that the conformally flat metrics given by (16) and (21) are valid
also for a =3.
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33 a=1

One can obtain a more general class of solutions for the case & =1. As the metric
demands that the motion of the fluid is irrotational, the four-velocity can be expressed
in terms of a function ¢(x’)as

4=,/ n"¢.at.5)", (31)
and w and p can be expressed as
w=p=5e""n"¢ .0, (32)

With conditions (31) and (32) it is possible to prove that the field equations (3)
reduce to the field equations of a massless scalar field (Tabensky and Taub 1973):

oy +inyAi0 =3k (b +EMMb.ab s), (33)
for which the trace is given by
1oy + 2010 = —kkn'd b ;. (34)

We study a special class of solutions by imposing a functional relationship of the
form

oc=0(p). (35)
Substituting (35) into the trace (34) we obtain
¢4 ;60" -35%+k)=0, (36)

where the primes denote differentiation with respect to ¢. Since n"¢ ;@ ; # 0, we obtain
the differential equation

60" —30”+x =0, (37
The general solution of (37) is

- { C exp(2x/3)"*(¢ - )]+ D
7 C exp[—(2x/3)%€]+ D

where £ is a particular value of ¢, n = (20"),; given by the boundary conditions, and

C =(x/6)"/*~1n, D =(x/6)"*+3n. (39)

1 /2«
}+5 4, (38)

The constants which appear in (38) have been fixed such that when ¢ =0 we have o = 0.
From equations (33) and (37) we find
kb +20' ¢+ im0 b uby = 0. (40)

One particularly simple solution of equation (40) can be obtained from (38) when
C =0, which reduces to (Penney 1976)

o =3(2k/3)"?*¢. (41)
By the substitution of (41) into (40) we obtain
b5+ 2x/3)" ¢ ,;=0, (42)

which has the general solution
& =(3/2)"*1n(Z + C3). (43)
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Substituting (43) into (41) we find the conformally flat solution
e =Z+C;, (44)

which is the same as relation (21) with « =1 when we assumed the functional relation
(19). In the particular case when k; =k, =k3=0, k4 #0 and C; =0, (44) becomes

2
c 7= k4X4,

which is a Robertson-Walker space-time.
For C # 0 we define (Som and Santos 1978)

(ol Benl ()" o5 e

which allows us to write equation (38) as

2

17212 1x(1xa?)"? 2k a ]
a_i§<?> ¢—ln[ 2 eXp<i?¢)$2[1i(1ia2)”2]‘ (46)
Substituting (46) into (40) we obtain the solution
3\? (C 26\ M2 3\'? 1 1
s=-(52) wlpee[-(3) +1}-() mlmrs) 47
where

F=an"(x;+&)(x;+ &),

and « and & are constants of integration.
By substituting (47) into (31) and (32) we can obtain w and u; for a perfect fluid in
the conformally flat space-time (46). We find

__3_6_20[ 1 T a*aF
Y=k Axa’F) ' —L Qza’F”
u = (a/F)l/z(xi + &),

where we need the condition aF >0 for w to be a positive function and u; to satisfy
i
uu = 1.

Conclusion

We have found a new class of conformally flat solutions for the problem of a fluid with
the equation of state p = aw. One recovers the solutions given by Vashchuk from these
solutions simply by putting « = 0. When a =1 our solution is equivalent to that given
by Taub. Further, one can investigate the case of the relativistic fluid by putting « =3 in
metrics (16) and (21). The solution corresponding to disordered radiation (a = Disalso
presented.
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